Specific cation adsorption on protein-covered particles and its influence on colloidal stability.
نویسندگان
چکیده
Protein coated particles present an anomalous colloidal stability at high ionic strength when the classical theory (DLVO) predicts aggregation. This observed deviation from DLVO behaviour appears for electrolyte concentrations above some critical bulk value. As we have suggested in previous publications the existence of an additional short-range repulsive 'hydration force' due to specific hydrated cation adsorption could explain this anomalous stability. The overlap of the hydration layers when two particles approach should provoke this repulsive force. New evidence of this mechanism has been observed when electrophoretic mobilities of protein-carrying latex particles were measured at various concentrations of sodium and calcium chloride. In the latter case a sign reversal of zeta-potential was found, probably due to the specific adsorption of Ca(2+) ions on protein molecules. The adsorption increases with the medium pH. These results have been analyzed following the treatment proposed by Ohshima and co-workers for large charged colloidal particles coated with a layer of protein. This study shows an increase in the positive fixed-charge density on the protein caused by the adsorption of cations.
منابع مشابه
Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro.
It is known that the nanoparticle-cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle-protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and...
متن کاملProtein adsorption on colloidal alumina particles functionalized with amino, carboxyl, sulfonate and phosphate groups.
Colloidal oxide particles in biomedical or biotechnological applications immediately become coated with proteins of the biological medium, a process which is strongly influenced by the surface characteristics of the particles. Fundamental correlations between surface characteristics and the, so far mainly uncontrollable, protein adsorption are still not clear. In this study the surface of collo...
متن کاملElectrokinetic behavior and colloidal stability of polystyrene latex coated with ionic surfactants.
This work is focused on analyzing the electrokinetic behavior and colloidal stability of latex dispersions having different amounts of adsorbed ionic surfactants. The effects of the surface charge sign and value, and the type of ionic surfactant were examined. The analysis of the electrophoretic mobility (mu(e)) versus the electrolyte concentration up to really high amounts of salt, much higher...
متن کاملFacile and economic method for preparation of nano-colloidal Silica with controlled size and stability
This study is focused on synthesis of nano-colloidal silica via alkaline water glass solution. Sodium ions of water glass were removed by cation exchanging in a resin column to obtain the silicic acid which was titrated to the solution of sodium silicate. Concentration of the colloidal silica and pH value of the solutions were controlled using different concentrations of alkaline sodium silicat...
متن کاملColloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis.
Targeting to specific sites of the body via colloidal carriers is sought in order to reduce drug side effects. The adsorption of plasma proteins on intravenously injected particles is regarded as the key factor in explaining their organ distribution: total bound protein, or, more likely, the presence of specific proteins and their conformation, are expected to influence macrophage uptake. Polys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 21 1-3 شماره
صفحات -
تاریخ انتشار 2001